Second Best Minimum Spanning Tree¶
A Minimum Spanning Tree
Observation¶
Let
So we need to find an edge
Using Kruskal's Algorithm¶
We can use Kruskal's algorithm to find the MST first, and then just try to remove a single edge from it and replace it with another.
- Sort the edges in
- For each edge in the MST (we will have
- Then, again try to find a MST in
- Do this for all the edges in MST, and take the best of all.
Note: we don’t need to sort the edges again in for Step 3.
So, the overall time complexity will be
Modeling into a Lowest Common Ancestor (LCA) problem¶
In the previous approach we tried all possibilities of removing one edge of the MST. Here we will do the exact opposite. We try to add every edge that is not already in the MST.
- Sort the edges in
- For each edge
- Find the edge
- Remove
- Compute the weight difference
- Repeat step 2 for all other edges, and return the spanning tree with the smallest weight difference to the MST.
The time complexity of the algorithm depends on how we compute the
We will preprocess the LCA by rooting the MST and will also compute the maximum edge weights for each node on the paths to their ancestors. This can be done using Binary Lifting for LCA.
The final time complexity of this approach is
For example:


In the image left is the MST and right is the second best MST.
In the given graph suppose we root the MST at the blue vertex on the top, and then run our algorithm by start picking the edges not in MST.
Let the edge picked first be the edge
Now we will find the maximum weight edge in this cycle by finding the
After doing this also with all other edges that are not part of the initial MST, we can see that this spanning tree was also the second best spanning tree overall. Choosing the edge with weight 14 will increase the weight of the tree by 7, choosing the edge with weight 27 increases it by 14, choosing the edge with weight 28 increases it by 21, and choosing the edge with weight 39 will increase the tree by 5.
Implementation¶
struct edge {
int s, e, w, id;
bool operator<(const struct edge& other) { return w < other.w; }
};
typedef struct edge Edge;
const int N = 2e5 + 5;
long long res = 0, ans = 1e18;
int n, m, a, b, w, id, l = 21;
vector<Edge> edges;
vector<int> h(N, 0), parent(N, -1), size(N, 0), present(N, 0);
vector<vector<pair<int, int>>> adj(N), dp(N, vector<pair<int, int>>(l));
vector<vector<int>> up(N, vector<int>(l, -1));
pair<int, int> combine(pair<int, int> a, pair<int, int> b) {
vector<int> v = {a.first, a.second, b.first, b.second};
int topTwo = -3, topOne = -2;
for (int c : v) {
if (c > topOne) {
topTwo = topOne;
topOne = c;
} else if (c > topTwo && c < topOne) {
topTwo = c;
}
}
return {topOne, topTwo};
}
void dfs(int u, int par, int d) {
h[u] = 1 + h[par];
up[u][0] = par;
dp[u][0] = {d, -1};
for (auto v : adj[u]) {
if (v.first != par) {
dfs(v.first, u, v.second);
}
}
}
pair<int, int> lca(int u, int v) {
pair<int, int> ans = {-2, -3};
if (h[u] < h[v]) {
swap(u, v);
}
for (int i = l - 1; i >= 0; i--) {
if (h[u] - h[v] >= (1 << i)) {
ans = combine(ans, dp[u][i]);
u = up[u][i];
}
}
if (u == v) {
return ans;
}
for (int i = l - 1; i >= 0; i--) {
if (up[u][i] != -1 && up[v][i] != -1 && up[u][i] != up[v][i]) {
ans = combine(ans, combine(dp[u][i], dp[v][i]));
u = up[u][i];
v = up[v][i];
}
}
ans = combine(ans, combine(dp[u][0], dp[v][0]));
return ans;
}
int main(void) {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
parent[i] = i;
size[i] = 1;
}
for (int i = 1; i <= m; i++) {
cin >> a >> b >> w; // 1-indexed
edges.push_back({a, b, w, i - 1});
}
sort(edges.begin(), edges.end());
for (int i = 0; i <= m - 1; i++) {
a = edges[i].s;
b = edges[i].e;
w = edges[i].w;
id = edges[i].id;
if (unite_set(a, b)) {
adj[a].emplace_back(b, w);
adj[b].emplace_back(a, w);
present[id] = 1;
res += w;
}
}
dfs(1, 0, 0);
for (int i = 1; i <= l - 1; i++) {
for (int j = 1; j <= n; ++j) {
if (up[j][i - 1] != -1) {
int v = up[j][i - 1];
up[j][i] = up[v][i - 1];
dp[j][i] = combine(dp[j][i - 1], dp[v][i - 1]);
}
}
}
for (int i = 0; i <= m - 1; i++) {
id = edges[i].id;
w = edges[i].w;
if (!present[id]) {
auto rem = lca(edges[i].s, edges[i].e);
if (rem.first != w) {
if (ans > res + w - rem.first) {
ans = res + w - rem.first;
}
} else if (rem.second != -1) {
if (ans > res + w - rem.second) {
ans = res + w - rem.second;
}
}
}
}
cout << ans << "\n";
return 0;
}
References¶
- Competitive Programming-3, by Steven Halim
- web.mit.edu